Square of Nine

The Square of Nine can be considered as an exotic section in relation to Gann analysis.

325	324	323	322	321	320	319	318	317	316	315	314	313	312	311	310	309	308	307
326	257	256	255	254	253	252	251	250	249	248	847	246	245	244	243	343	241	306
327	258	197	196	195	194	193	192	191	190	189	188	187	186	185	184	183	240	305
328	259	198	145	144	143	142	141	140	139	138	137	136	135	134	133	182	239	304
329	260	199	146	101	100	99	98	97	96	95	94	93	92	91	132	181	238	303
330	261	200	147	102	65	64	63	62	61	60	59	58	57	90	131	180	237	302
331	262	201	148	103	66	37	36	35	34	33	32	31	56	89	130	179	236	301
332	263	202	149	104	67	38	17	16	15	14	13	30	55	88	129	178	235	300
333	264	203	150	105	68	39	18	5	4	3	12	29	54	87	128	177	234	299
334	265	204	151	106	69	40	19	6	1	8	11	28	53	86	127	176	233	298
335	266	205	152	107	70	41	20	7	8	9	10	87	52	85	126	175	232	897
336	267	206	153	108	71	43	81	33	23	24	25	26	51	84	125	174	231	296
337	268	207	154	109	78	43	44	45	46	47	48	49	50	83	184	173	230	295
338	269	208	155	110	73	74	75	76	77	78	79	80	81	82	123	172	889	894
339	270	209	156	111	112	113	114	115	116	117	118	119	120	121	122	171	228	293
340	871	210	157	158	159	160	161	162	163	164	165	166	167	168	169	170	887	898
341	272	211	212	213	214	215	216	217	218	219	220	221	333	223	334	225	226	291
342	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290
343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360	361

Square of Nine Structure

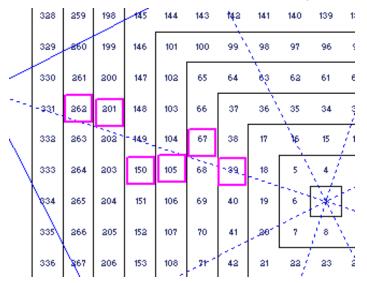
Starting from the center(1) and following the numbers as they unwind, an infimite spiral becomes apparent. Looking at lower right corner of the grid, you see the squares of odd numbers...3,5,7,9,11..giving.. 9,25,49,81,121, with each square being a distinct Square within the structure.

This tool is an effective marker of price support and resistance.

Here's how this structure becomes a calculator...

Find the number 15 on the Square of Nine . If a stock was trading at a price of \$15, what are the price objectives using a Gann Wheel? The number 15 is perfectly aligned under the zero and 360 degree angle marked on the top of the Wheel. Because the number 15 is aligned with zero we need make no further adjustments, just read the Gann targets straight off the wheel. The 45 degree price objective from 15 is 17. It is the next number that aligns with the 45 degree line that travels towards the top right corner. The number 19 crosses were the 90 degree line was drawn. We would use the phrase, "\$19 is 90 degrees up from \$15." Now skip over to 180 degrees and find \$23 is directly opposite \$15. We would still say, "23 is 180 degrees up from 15". At 270 degrees \$28 is the price objective. A full 360 degrees up from 15 is \$34. That is how a Gann Wheel is used.

Why did we skip the bottom right corner angle which would be 135 degrees? Because like Fibonacci, some calculations are more important than others. The Fibonacci ratios 0.382, 0.500. 0.618, 1.000, and 1.618 are relationships we know are the critical ratios to identify. This is also how the various Gann angles are interpreted. We have a circle that is divided into quarters and sixths, but we also need to divide 360 degrees into thirds because 120 degrees and 240 are extremely important. The angles of greatest interest in financial markets are 45, 90, 120, 180, 240, 270, 315, and 360.


Sampels Usage of Square of 9

(1) Find potential turning point dates: count the # of calendar days between significant

A. high and low. B. high to high C. low to lwo .

Find that number on the Sq. of 9. Now note the numbers which are on the same angle as your starting number, and watch for possible swings at those dates.

Example: A move for low A to low B takes up 39 calendars days. You locate the number 39 on the square, and note the nubmers which are on the same angle. These would be:

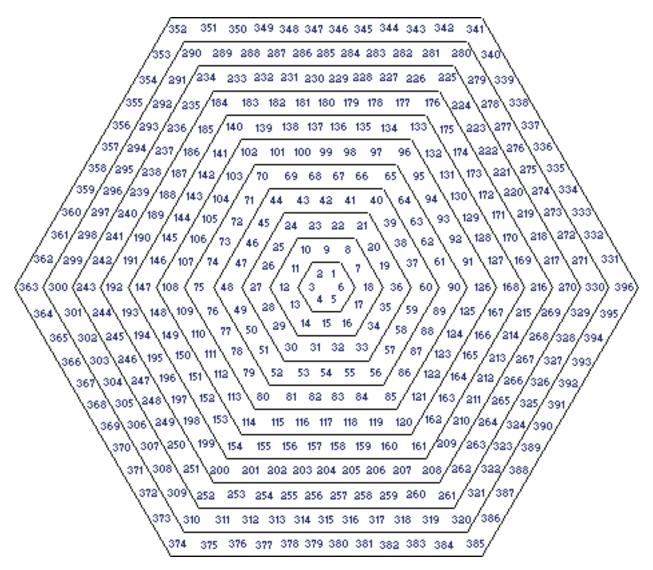
67,105,150,201,262...

Now go back to your original low; you would look for another swing point at 67 calendar days from this low, then 105 calendar days, etc.

(2) Calculate potential turning point prices: take the price of a major high/low and locate that value on the Square. Note the values which are 45, 90, 120, 180, 240, 270, and 360 degrees on the Square. If you are using a major low, you would note the numbers on those angles which are greater than your starting value. If using a major high, you would use the numbers which are lower.

Examples: S&P 500 07/24/2002 make a low at 775. You expect prices are going to rally and want to find potential points of resistance as price move higher. locate 775 on the Square of 9 chart, and note the following angles:

45 deg. = 909 90 deg. = 909 120 deg. = 815,933 180 deg. = 832,952 240 deg. = 853,974 270 deg. = 861


1025	1024	1023	1022	1021	1030	1019	1018	1017	1016	1015	1014	1013	1012	1011	1010	1009	1008	1007	1006	1005	1004	1003	1002	1001	1000	999	998	997	996	995	994	993
1026	901	900	899	898	897	896	895	894	893	892	891	890	889	888	887	886	885	884	883	882	881	880	879	878	877	876	875	874	873	872	871	992
1027	902	785	784	783	782	781	780	179	778	m	No	795	774	773	773	771	770	769	768	767	766	765	764	763	763	761	760	759	758	757	870	991
1028	903	786	677	676	675	674	673	672	671	910	669	668	667	686	665	664	663	662	661	660	659	656	657	656	655	654	653	652	651	756	869	990
1029	904	787	678	577	576	575	574	573	572	57	570	\$69	568	367	566	567	564	563	562	561	560	559	558	557	556	555	554	553	650	755	868	989
1030	905	788	679	578	485	484	483	482	401	490	479	428	417	476	495	474	473	472	471	470	469	468	467	466	465	464	463	552	649	754	867	988
1031	906	789	680	579	486	401	400	399	398	397	396	395	394	393	392	391	390	389	388	381	486	385	384	383	382	381	462	551	648	753	866	987
1032	907	190	681	580	487	403	325	394	323	033	321	320	, 619	318	317	316	315	314	313	312	311	310	809	308	307	380	461	550	647	752	865	986
1033	908	791	682	581	488	403	326	257	256	255	254	253	ata	251	250	249	248	247	246	245	244	243	242	241	305	379	460	549	646	751	864	985
1034	909	793	683	582	489	404	320	258	197	196	195	194	193	192	191	190	189	188	107	106	185	184	183	340	305	378	458	548	645	750	863	984
1035	910	793	684	583	490	405	528	259	196	145	144	143	142	(jų 1	140	139	138	137	136	135	154	133	182	239	304	377	458	547	644	749	862	983
1036	911	194	685	584	491-	406	329	260	199	146	101	100	99	98	97	96	95	94,'	93	98	91	158	181	238	303	376	457	546	643.	146	861	982
1037	912	795	686	585	492	kon	330	261	200	147	102	65	64	63	62	61	60	20	58	57	90	131	180	237	302	375	456"	545	642	2/2	860	981
1038	913	196	687	586	492	408	331	363	1201-	348	103	66	37	36	\$5	34	33/	38	31	56	89	130	179	336	001	374	455	544	641	746	859	980
1039	914	797	688	587	194	409	332	263	202	149	104	67	38	17	16	15	18	13	30	55	88 -	129	178	235	300	873	454	543	646	745	858	979
1040	915	198	689	588	495	410	333	264	203	150	105	68	39	48	5	4/	3	13	-89	54	87	128	177	334	899	372	452	542	639	744	857	978
1041	916	799	690	96 9	496	411	334	aes	204	151	106	69	40	19	6		a.	11	28	53	86	127	176	233	298	371	452	54	638	743	856	917
1048	917	800	691	590	497	413	335	266	305	152	107	70	.41-	- 20		18	9	19.	87	58	85 -	-126	175	338	897	370	451	540	637	748	855	976
1043	918	801	<u>6</u> 92	591	498	413	336	867	206	153-	-106°	71	43	21/	aá	23	·24	25	26	\$1-	84	125	174	231	296	369	150	\$19	636	741	854	915
1044	919	802	693	593	499	414	337	268	307	154	109	72	43	44	/ 45	46	42	48	49	50	83	128-	.173	230	295	368	49	538	635	740	853	974
1045	920	893	694	593	500	415	338	269	208	155	110	73	.74	15'	76	17	78	79	80	81	82	123	172	229	294	367	448	587	634	739	852	973
1046	981	<u>8</u> Q4-	695	594	501	416	330	270	309	156	111	, #a	113	,114	115	116	117	418	119	120	121	122	171	338	295	766	447	536	633	738	851	972
1047	932	805	696	595	502	417	340	271	210	157	150	159	160	161	16.3	163	164	165	166	167	16-8	169	170	337	293	365	446	535	633	737	850	971
1048	923	806	697	596	503	418	<i>\$</i> 41	272	211	212	213	214	.e15	216	217	218	219	230	331	832	223	224	225	226	3 91	364	445	534	631	736	849	970
1049	924	807	698	597	504	419	002	273	374	275	276	271	276	279	280	281	203	283	å04	285	286	287	288	289	290	363	444	500	630	735	848	969
1050	925	808	699	598	505	420	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360	361	362	443	532	629	734	847	968
1051	926	809	700	599	506	431	433	423	424	435	400	431	428	429	430	431	438	433	404	435	436	437	438	439	440	441	443	531	638	733	846	967
1052	927	810	701	600	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	ska	523	524	5/5	526	527	528	529	530	627	732	845	966
1053	928	811	702	601	602	605	604	605	606	607,'	608	609	610	611	613	613	614	615	616	617,	618	619	620	621	633	623	634	625	636	731	844	965
1054	929	812	703	704	705	706	707	708	709	340	711	712	713	714	715	716	717	218	719	720	721	726	723	724	725	726	727	728	729	730	843	964
1055	930	813	814	815	816	817	818	819	820	831	822	833	824	825	826	827	828	839	830	7831	808	633	834	835	836	837	838	839	840	841	843	963
1056	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945	946	947	948	949	950	951	952	953	954	955	956	957	958	959	960	961	962
1057	1058	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075	1076	1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087	1088	1089
_																																

©2002 Global View Technology (http://www.globalviewtech.com/onlinehelp)

Gann Hexagon Chart

The Hexagon Chart Structure

Let's see how Gann explains the Chart.

"Since everything moves in a circle and nothing moves in straight lines, this chart is to show to you how the angles influence stocks at very low levels and very high levels and why stocks move faster the higher they get, because they have moved out to where the distance between the angles of 45* are so far apart that there is nothing to stop them and their moves are naturally rapid up and down."

We begin with a circle of "1", yet the circle is 360^* just the same . We then place a circle of circles around this circle and six circles complete the second circle , making a gain of 6 over the first one , ending the second circle at 7, making 7 on this angle a very important month, year , and week as well as days , the seventh day being sacred and a day of rest . The third circle is completed at 19 . The fourth circle around is completed at 37 - a gain of 18 over the previous circle . The fifth circle is completed at 61 , a gain of 24 over the previous circle . The sixth circle is completed at 91 , a gain of 30 over the previous circle , and the seventh circle at 127 , a gain

of 36 over the last circle . Note that from the first the gain is 6 each time we go around . In other words, when 'is' have traveled six times around we have gained 36 . Note that this completes the first Hexagon and as this equals 127 months , shows why some campaigns will run 10 years and seven months , or until they reach a square of the Hexagon , or the important last angle of 45^* .

The eighth circle around is completed at 169, a gain of 42 over the first. This is a very important angle and an important time factor for more reasons than one. It is 14 years and one month, or double our cycle of 7 years. Important tops and bottoms culminate at this angle as you will see by going over your charts.

The ninth circle is completed at 217, a gain of 48 over the previous circle. The tenth circle is completed at 271, a gain of 54. Note that 271 is the ninth circle from the first, or is the third 90* angle or 270*, three fourths of a circle, a strong point.. All this is confirmed by the Master Twelve Chart, by the four seasons and by the Square of Nine Chart, and also confirmed by the Hexagon chart., showing that mathematical proof is always exact no matter how many ways or from what directions you figure it.

The eleventh circle is completed at 331, a gain of 60 over the last circle. The twelfth circle is completed at 397, which completes the Hexagon., making a gain in 11 circles of 66 from the beginning.

66 months , or 5 years and six months , marks the culmination of major campaigns in stocks . Note how often they culminate on the 60th month , then have a reaction , and make a second top or bottom in the 66th month . Note the number 66 on the Master Twelve Chart . Note it on the Square of Nine and note that 66 occurs on an angle of 180* on the Hexagon chart , all of which confirms the strong angle at this point .

We have an angle of 66*, one of 67.5* and one at 68, confirming this point to be doubly strong for tops and bottoms or space movements up or down.

Note the number 360* on the Hexagon Chart . It completes a circle of 360* . From our beginning point this occurs at an angle of 180 * on the Hexagon Chart going around , but measuring from the center , it would equal an angle of 90* or 180* , making this a strong point , hard and difficult to pass, and the ending of one campaign and the beginning of another .

Again with the center of the Hexagon Chart at "1" notice that 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, and 397 are all on this direct angle and are important points in time measurement. Beginning with "1" and following the other angle, note that 2,9,22,41,66,97,134,177,226,281, and 342 are all on a same angle of 90*, or an angle of 60* and 240* as measured by the Hexagon Chart.

Go over this Chart and the important angles each way and you will see why the resistance is met either on days, weeks, months or years, and why stocks stop and make tops and bottoms at these strong important points according to time.

When any stock has passed out above 120* or especially above 127* or 127 points and gone out of the square of the first Hexagon, its fluctuations will be more rapid and it will move faster up and down. Notice near the center that in traveling from 66 to 7 you strike the angle of 180* or 90*, but when the stock gets out to 162, it can travel up to 169 before striking another strong angle. That is why fast moves occur up and down as stocks get higher and as they move from a center of time.

Remember that everything seeks the center of gravity and important tops and bottoms are formed according to centers and measurements of time from a center , base or beginning point , either top or bottom . The angles formed going straight up and across , 'may a com' just the same going across as the stock travels over for days,weeks,months or years . Thus , a stock going up to 22.5 would strike an angle of 22.5 * . If it moves over 22.5 days it would strike the angle or 22.5 weeks or 22.5 months , it would also strike an angle of 22.5 * , and the higher it is when those angles are struck and the angle it hits going up , the greater the resistance to be met. Reverse that rule going down .

Market movements are made just the same as any other thing which is constructed. It is just the same as constructing a building. First the foundation has to be laid down and then the four walls have to be completed and last, but not least of all, the top has to be put on. The cube or hexagon proves exactly the law which works because of time and space in the market. When a building is put up it is built according to a square or hexagon. It has four walls or four sides, a bottom and a top; therefore, it is a cube.

In working out the 20- year Cycle in the stock market , the first 60^* or 5 years , from the beginning forms the bottom of the cube . The second 60^* , running to 120^* , completes the first angle or the first side and runs out the 10 year Cycle . The third 60^* or the second side , ends 15 years or 180^* . It is very important because we have the building half completed and must meet the strongest resistance at this point . The fourth 60^* , or at the end of 20 yrs or 240 months , completes the third side . We are now two thirds around the building , a very strong point which culminates and completes our 20 -year Cycle . The fifth 60^* , or 300^* point ,days ,weeks , or months completes 25 years , a repetition of the first five years , but it completes the fourth side of our building and is a very important angle . The sixth 60^* , or 360^* , completing the circle and ending 30 years as measured by our Time Factor , which runs 1* per month on an angle of 45^* , completes the top . This is a complete cube and we begin over again . "

"Study this in connection with the Hexagon Chart . It will help you . "

Jan 1931

WD Gann.